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Al~traet--The Biot equations model the propagation of acoustic waves in fluid-saturated porous media. 
The "drag" and "virtual mass" coefficients in the equations depend on the physical properties of the fluid 
and solid constituents, the frequency and the microstructure of the porous medium. Recently, a method 
has been developed for determining the drag and virtual mass coefficients as functions of frequency. The 
method requires solving for the motion of the fluid in the pores when the pore walls are subjected to a 
spatially uniform, oscillatory motion. In this work we use the finite element method to compute the fluid 
motion and evaluate the drag and virtual mass coefficients for granular media consisting of spherical and 
polyhedral grains with face centered cubic (foe) packings. The materials we consider have porosities that 
range from 0.261 to 0.480. We conclude that an empirical approach based on Biot's results for cylindrical 
pores can adequately approximate our computations for an foe packing of spheres. 
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I N T R O D U C T I O N  

The theory for wave propagation in a fluid-saturated porous medium developed by Biot (1956a, b) 
contains several coefficients which depend on the physical properties of the fluid and solid 
constituents, the frequency and the fabric, or microstructure, of the porous medium. Biot (1956b) 
determined the "drag" and "virtual mass" coefficients as functions of the frequency by assuming 
a straight cylindrical pore geometry. He suggested that his results could be extended to other pore 
geometries by prescribing two empirical parameters, the "pore size parameter" and the "tortuos- 
ity." His results were widely adopted. Subsequent authors have suggested various approaches for 
evaluating the pore size parameter and the tortuosity (Berryman 1980, 1981; Carman 1956; Hovem 
& Ingram 1979; Johnson & Plona 1982; Johnson et ai. 1982; Ogushwitz 1985a, b; Stoll & Bryan 
1969; Stoll 1974, 1977). 

Bedford et al. (1984) proposed a method for evaluating the drag and virtual mass coefficients 
as functions of frequency for an arbitrary pore geometry. The method requires solving for the 
motion of the fluid in the pores when the pore walls are subjected to a spatially uniform, oscillatory 
motion. In the case of straight cylindrical pores, their method agreed with Biot's result. Bedford 
(1986) considered a medium consisting of alternating layers of fluid and solid. He found that when 
the drag and virtual mass coefficients were evaluated using the method of Bedford et al. (1984), 
the phase velocity and attenuation of the "fast" and "slow" waves predicted by the Biot theory 
agreed with the phase velocity and attenuation of the first and second modes of the theoretical 
solution for plane waves in the layered medium over a large range of frequency. 

By using the finite element method to determine the motion of the fluid, the present authors 
(Yavari & Bedford 1988) used the method of Bedford et al. (1984) to determine the drag and virtual 
mass coefficients as functions of frequency for several two-dimensional pore spaces. We concluded 
that the drag coefficient is very insensitive to the pore geometry, while the virtual mass coefficient 
is quite sensitive to the pore geometry. We also found that our results could be expressed in 
nondimensional forms which permit the coefficients to be scaled for different values of a 
characteristic linear dimension of the pore space. 

In this paper, we use the finite element method and the method of Bedford et al. (1984) to 
determine the Biot drag and virtual mass coefficients as functions of frequency for several 
three-dimensional pore geometries. Our approach has two elements in common with the method 
known as "homogenization". [See the applications of homogenization to saturated porous media 
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by Auriauit & Sanchez-Palencia (1977), Auriault (1980) and Auriault et al. (1985).] We model the 
pore geometry as periodic, and we solve a "local problem" (the oscillatory motion of the pore fluid) 
to determine the coefficients. 

We consider granular media consisting of face centered cubic (fcc) arrays of spherical and 
polyhedral grains. By altering the geometry of the polyhedral grains, we obtain the coefficients for 
granular media with a range of porosities. We compare our results with the values of the coefficients 
that have been used by other investigators. 

PREVIOUS WORK 

One of our objectives in carrying out this study was to evaluate the methods that previously 
existed for determining the drag and virtual mass coefficients in Biot's equations. To do so, we must 
briefly discuss the methods and some terminology. The equations obtained by Biot (1956a) for the 
motions of the solid and fluid constituents are 

~: b3__ NWu, + V[(A + N)V" us + QV" uf] = ~ (pllu, + pl~uf) + Ot (U~ -- Uf), [la] 

and 

0 2 bO_ 
V[QV' us + RV" uf] = ~ (P l2Us  "4- P22Uf)  - -  (~t (us  - -  Uf). [lb] 

The terms us and uf are the displacements of the solid and the fluid constituents. The coefficients 
A, N, Q and R govern the viscoelastic responses of the constituents. The term b is the drag 
coefficient. The terms Pu, Pl2 and P22 are mass coefficients that are related to the porosity ~ and 
the densities p~ and pf of the solid and fluid constituents by 

Pll + P,: = (1 -- 4~)P, [2a] 

and 

Pl2 + P22 = ~bPf. [2b] 

The coefficient Pn represents a "mass coupling" between the fluid and solid; Blot showed that it 
must be negative. 

By defining the "apparent mass" or virtual mass coefficient c as 

c = -Pl2 [3] 

and introducing the notation 

P = A + 2N [41 

into [la,b] and [2a,b] the Biot equations can be written in the forms 

(l - q~)p, ii~ = (P - N)V(V • us) + NV2u~ + QV(V. uc) - b(u, - lit) - c(ii~ - lif) [5a] 

and 

4~pfiif = QV(V' us) + RV(V. ur) + b(/l~ --/if) + c(ii~ - iif). [5b] 

These equations are often recast in the forms (e.g. Stoll 1974) 

p fl~ - pfik = (H  - N)Ve  - C V (  + NA2us [6a] 

and 

where 

p f f i s - m C v = C V e - M V ~  + ( ~ ) ~ v ,  

e---V.u~, w=~b(u~-uf) ,  ~ = V . w ,  p = ( 1 - ¢ ) p ~ + ¢ p r ,  

H =  P + 2Q + R, C (Q + R ) R Pf c = ~b , M = ~ - ~ ,  m = ~ + 4 - -  I .  

[6b] 

[7] 
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By subjecting fluid in a circular cylinder to an oscillating axial pressure gradient and calculating 
the resulting average velocity of  the fluid and the shear stress on the wall of  the pore, Biot (1956b) 
determined the drag coefficient b as a function of  the frequency. He obtained the result 

b = Fqd~2 
kp [8] 

where r/is the viscosity of  the fluid, kp is the permeability of  the porous solid and 

i [ ¢r(¢) ]. 
F = ~  1 - ~ T ( ¢ ) J  [91 

The term T(¢) is a function of  the complex Kelvin functions of  the first kind and zero order and 
their derivatives: 

ber'(~) + i bei'(¢) 
T(~) = ber(¢) + i bei(~) ' [10] 

where the argument ~ is defined by 

~ -- ap ; [111 

here e) is the frequency and ap is the radius of  the cylindrical pore. Investigators applying this result 
to porous media have usually treated ap as an empirical constant called the "pore size parameter". 
For spherical grains, Hovem & Ingram (1979) suggested the relation 

d 
ap = ~b [3(1 - ~b)]' [121 

where d is the grain diameter. 
Since the term F is complex, the drag coefficient b obtained from [8] is complex. When this 

complex coefficient is substituted into the equations of  motion in the case of  steady-state waves, 
the imaginary part of  b effectively contributes a frequency-dependent term to the virtual mass 
coefficient c. 

The permeability kp of  media consisting of  regular grains can be approximated with the 
Kozeny-Carman equation (Carman 1956; Hovem & Ingram 1979): 

k o = ~ba2° [13] 
4k0 ' 

where k0 = 2 for circular tubes and k0 "" 5 for spherical grains. The value of  k0 is given for different 
pore geometries by Carman (1956). Also, see the discussion by Ogushwitz (1985a). 

Some investigators have expressed the virtual mass parameter m (see [7]) as m = apr/dp, where 
is called the "structure factor" or the "tortuosity". The tortuosity is related to the virtual mass 

coefficient c by 

c = (a - 1)~bpr. [14] 

By analogy with the virtual mass force on an isolated particle in a fluid, Berryman (1981) 
suggested that the tortuosity be expressed by the relation 

He noted that the term r = 1/2 for an isolated spherical particle and 0 ~< r ~< 1 for other ellipsoidal 
shapes. 

Johnson (1980) showed that the value of the virtual mass coefficient at high frequency could be 
determined through measurement of  the index of  refraction of  "fourth sound" when the porous 
medium is saturated with Helium II. Johnson et al. (1982) used this method to measure the 
tortuosity as a function of  the porosity 4~ for spherical glass beads. They altered the porosity by 
sintering the beads. 
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M E T H O D  OF B E D F O R D  E T  A L .  (1984) 

To describe the method introduced by Bedford et al. (1984), we begin with the one-dimensional 
forms of  [5a,b]: 

02Us 
QO'Ut b(/Js _ tjf) _ c(ffs _/ / f )  [16a] (l - ~)ps~/s = P~-~x2 + 8x 2 - 

and 

2U s (~ 2Uf 
(~pf/df ~- Q ~-~X2 + R ~ x 2 +  b( t i s -  tit) + c(ffs-/df). [16b] 

Let us suppose that the solid constituent of the fluid-saturated porous medium is subjected to a 
spatially uniform, steady-state oscillatory motion, so that the displacement us is of  the form 

Us = De i~', [17] 

where D is a prescribed real constant and o9 is the frequency. The resulting steady-state motion 
of  the fluid is of  the form 

ur= Oe '~', [18] 

where 0 is a complex constant. By substituting these expressions for us and uf into the Biot equation 
of  motion for the fluid constituent [16b], we obtain the result 

dppfcoO = (ib - ogc)(O - O ). [19] 

Note that the terms in [16b] containing Q and R vanish because the motion is spatially uniform. 
We can solve the complex equation [19] for the two real coefficients b and c: 

where 0 = OlD. We can solve these two equations for b and c as functions of frequency if we can 
determine 0 as a function of  frequency. 

Thus, determining b and c reduces to the solution of a steady-state boundary value problem in 
fluid mechanics: we subject the solid constituent of a porous medium to a rigid oscillatory motion 
and solve for the motion of  the fluid in the pores. Let u be the displacement vector of the fluid. 
By averaging u over the pore volume v, we determine the fluid displacement uf which appears in 
Blot's equations: 

U f = - -  (u.e,) d v ,  [21] 
V , 

where the vector el is a unit vector which specifies the direction of  the imposed motion of the solid 
constituent. By expressing the steady-state motion of the fluid in the pore as u = fie i~' and 
introducing [18] into [21], we obtain O as a function of frequency: 

0 = 1_ f ( a .  el) dr. [221 

In the case of straight cylindrical pores, the oscillatory motion of  the pore fluid can be determined 
in closed form. Bedford et al. (1984) showed that in this case the value of  the drag coefficient b 
obtained from their method agrees with the result obtained by Blot (1956b). For more complicated 
pore geometries, such as the pore volume of a granular material, it is necessary to use a numerical 
method to determine the oscillatory motion of the pore fluid. The present authors (Yavari & 
Bedford 1988) used the finite element method to determine the drag and virtual mass coefficients 
for several two-dimensional pore geometries. By comparing our results to cases for which 
closed-form results are available, we concluded that it is possible to obtain accurate values of  the 
coefficients for the range of  frequencies of interest in studies of  the acoustics of porous media. In 
this work we extend our investigation to three-dimensional pore geometries. 
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THE MIXED FINITE ELEMENT F O R M U L A T I O N  

Our objective is to use the finite element method to determine the motion of a viscous, 
compressible fluid in the pore volume of a porous medium when the pore walls are subjected to 
a spatially uniform, oscillatory motion. We formulate the problem in terms of the components of 
the displacement vector of the fluid and a Lagrange multiplier related to the pressure. A 
formulation of this type is called a "mixed" finite element method (e.g. Carey & Oden 1983). The 
formulation we use was described in our two-dimensional study (Yavari & Bedford 1988) and in 
more detail by Yavari (1988). Here we merely summarize the formulation used in this study. 

Under the assumptions of small displacements and small changes in pressure and density, we 
can express the steady-state forms of the linear momentum (Navier-Stokes) equation, the 
continuity equation and the boundary condition as 

.~V~fi + BV(V. ~) + ~ = O -  I 

V ' ~  -~rPI in ~, 

fi = Del on Fs, [ 2 3 ]  

where ~ is the displacement vector of the fluid, fl is the domain (volume) in which the solution 
is to be obtained, Fs is the part of the surface of fl corresponding to the boundary between the 
fluid and solid constituents and/3 is the pressure of the fluid. The term Kf is the bulk modulus of 
the fluid. The terms .4 and B are defined by (Yavari & Bedford 1988) 

~ =  iq [24a] 
(pfCD) 

and 

Kr i(x + ~q) [24b] = + ' 

where ~/, Pr and x are the viscosity, density and bulk viscosity of the fluid. 
The boundary value problem [23] can be expressed as an equivalent variational problem. We take 

the inner product of the first equation with a variation 6fi and integrate over the domain. We 
enforce the second equation by introducing a Lagrange multiplier ~ (see Yavari & Bedford 1988). 
The resulting variational formulation is 

The Lagrange multiplier is related to the pressure by/ i  -- -KtZ/i~. 
We obtain a finite element approximation for ~ by replacing the domain f~ in [25] by a discretized 

domain f~h. Our objective is to seek approximate solutions fih and 2h which depend on the mesh 
size h of the discretized domain. We assume that the solution fih is contained in a subspace of Hl(f~h) 
and that the solution ~h is contained in a subspace of/-/°(f~h), where H"(f~h) denotes the set of 
functions on ~h whose nth derivatives are square integrable. In terms of suitable finite element basis 
functions ("shape functions") ~j and O., which are simple functions defined piecewise---element 
by element--over the discretized domain (the "mesh"), we can write the approximate solutions in 
the forms 

and 

fih (x) = ~ ~uj (x)Uj [26a] 
J 

L(x) = ~ O.(x).d,. [26b] 
n 

The shape functions ~u~ contain complete polynomials of degree k I> 1 which are smooth enough 
to be members of the class Hl(g~h). The shape functions Om contain complete polynomials of degree 

IJMF 16/~-J 
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r >1 0 which need not be smooth but are members of the class H°(~h). The coefficients Uj and/in 
(the nodal point values of the dependent variables) must be determined to obtain the solutions. 

By substituting [26a,b] into the discretized form of [25], we obtain the linear system of equations 

0 [27] gl:]r U] = '  

where 

and 

h 

(~,2)i. = fn [V" ~i8.1 dv 
h 

We calculate the terms in [27] one element at a time, obtaining the final formulation by summing 
the contributions of the elements. We solve the equation by applying the "essential" boundary 
conditions i7 = Del on the pore boundaries (where the unit vector et defines the direction of the 
oscillatory motion), and applying periodic and symmetry boundary conditions where appropriate. 

COMPUTATIONAL CONSIDERATIONS 

Choosing an appropriate element (i.e. choosing the polynomials which describe the shape 
functions) is particularly important for mixed finite element approximations (e.g. Cary & Oden 
1983). The nature of the pore geometries we considered suggested the use of tetrahedral elements. 
First, we tried a 10-node tetrahedron with a quadratic approximation for the displacements, a 
discontinuous linear approximation for the Lagrange multiplier Xh, and a 4-point integration rule 
(see Zienkiewicz 1977, pp. 172, 202). With this element we had limited success for two-dimensional 
problems, but it was overconstrained for the three-dimensional problems. We then tried using a 
discontinuous constant approximation for the Lagrange multiplier. This approach failed for 
two-dimensional problems and led to only moderate success for the three-dimensional problems. 

Due to our lack of success with the tetrahedral element, we decided to use the very reliable 
20-node brick element, which we show in figure 1 referred to a local cartesian coordinate system 
(~, r/, ~). Four brick elements make up a tetrahedron, as shown in figure 2. We used a 20-node brick 
element from the "serendipity" family of elements (Zienkiewicz 1977). We used a piecewise linear 
expression for the Lagrange multiplier ~h: 

81 = 1, 1~)2 = ~, 83 = Y], 6)4 = ~" 

8 ~=+1 

13 15 

= _ = +1  

~, = - 1  

Figure 1. Twenty-node isoparametric element with discon- 
tinuous linear constraint. 

Figure 2. Division of a tetrahedron into four brick 
elements. 
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We used a quadratic expression for the displacement uh. The corner node values were 

~i = ~(1 + ~i)(1 + r/r/i) (1 + ~ i ) ( ~ ,  + r/r/i + ~ i -  2) 

and the typical mid-side node values were 

¢i=0, r/= +1, ~= +l ,  ~ i = ~  1-~2)(l+r/r/i)(l+~i). 

We used isoparametric elements to account for the curved geometries. We evaluated the integral 
terms in [27] by the 14-point quadrature rule, which accurately integrates up to the complete quintic 
polynomials (Irons 1971). The highest order polynomials involved in these expressions are fourth 
order (quadratic times quadratic). To solve the linear system of equations [27], we used a code based 
on the "frontal" method (Irons & Ahmad 1980). 

THE M I C R O S T R U C T U R E  

For our first three-dimensional computations we chose a medium consisting of a face centered 
cubic (fcc) array of spherical grains [figure 3(a)]. The choice of an fcc packing to simulate a granular 
material was based in large part on our subjective judgment. We were unable to find information 
about natural packings of grains that would lead us to choose one packing over another. We were 
influenced by the fact that theoretical results exist for the elastic moduli of an fcc array of spherical 
grains. Thus our results would contribute to a complete evaluation of the coefficients in the Biot 
theory for this model material. The computed porosity of our finite element model of this medium 
was ~b = 0.261. [The exact porosity of an fcc packing of spheres is 1 - ~/(3V/2) = 0.2595.] Due to 
the periodicity and symmetry of the packing, we only needed to model the motion of the fluid in 
one-fourth of the periodic element of the material [figure 3(b)]. 

From the finite element mesh we had designed to model the fcc array of spherical grains, we 
also obtained models for media consisting of fcc packings of 32-sided polyhedra. To investigate 
the effect of the porosity of the medium on the coefficients, we systematically altered the geometries 
of the polyhedra to obtain models of granular media having porosities q~ = 0.480, 0.431 and 0.382. 

(e) 

(b) (e) 

Figure 3. (a) An fcc packing of spherical grains. (b) The part of the periodic element needed for analysis. 
(c) The finite element mesh. 
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Fhe pore volumes of  the polyhedral media and the corresponding finite element meshes are shown 
n figures 4-6. 

We first constructed course meshes of  the pore spaces and then refined them to assess the 
tccuracy of  the solutions. For  the spherical-grained medium and the polyhedral-grained medium 
¢¢ith porosity ~b = 0.480, the course mesh had 192 elements and the refined mesh had 1536 elements. 
Fhe refined mesh for the spherical-grained medium is shown in figure 3(c). The refined meshes for 
:he three polyhedral-grained media are shown in figures 4(c), 5(c) and 6(c). 

The maximum difference between the solutions we obtained using the course and refined meshes 
Yor the frequency range from co = 100 to 100,000 was 4% for the spherical-grained medium and 
~.4% for the polyhedral-grained media. The results we report were obtained with the greatest 
:efinement that was possible with our program and within the memory constraints of  the Cray 
K-MP/24. Our numerical experiments with two-dimensional pore spaces for which exact solutions 
.~xist (Yavari & Bedford 1988) suggest that the errors in the three-dimensional results obtained with 
:he refined mesh should be smaller than the differences between the results obtained with the course 
md the refined meshes. 

R E S U L T S  

In our two-dimensional study (Yavari & Bedford 1988), we showed that the coefficients b and 
: can be expressed in the functional forms 

b c 
~bpf~ = ~'(Re,  M), ~ = if(Re, M), 

~¢here the dimensionless parameters Re and M are defined by 

Re - Pr°gD2 M - coD 

(a) 

(b) (c) 

Figure 4. (a) An fcc packing of 32-sided polyhedral grains with porosity q~ = 0.480. (b) The part of the 
periodic element needed for analysis. (c) The finite element mesh. 



DRAG AND VIRTUAL MASS COEFFICIENTS FOR GRANULAR MATERIALS 893 

(a) 

(b) (c) 

Figure 5. (a) An fcc packing of 32-sided polyhedral grains with porosity ~ = 0.431. (b) The part of the 
periodic element needed for analysis. (c) The finite element mesh. 

(a) 

(b) (c) 

Figure 6. (a) An fcc packing of 32-sided polygonal grains with porosity ~b = 0.382. (b) The part of the 
periodic element needed for analysis. (c) The finite element mesh. 



894 B. YAVARI and A. BEDFORD 

The terms r/and Kf are the viscosity and bulk modulus of the fluid and D is a characteristic linear 
dimension of the pore volume. The parameters Re and M can be recognized as a Reynolds number 
and a Mach number, respectively. Re is the ratio of the frequency to the "critical" frequency, 
defined by Biot (1956b). 

M is a measure of  the effect of the compressibility of  the fluid on the solutions for b and c. For 
frequencies that are sufficiently low that M 2 <~ 1, the effect of  compressibility can be neglected and 
the quantities b/(c~prw ) and c/(c~pr) depend only on Re (Yavari & Bedford 1988). For this reason, 
we will present our results as plots of the dimensionless drag coefficient b/(ckprw) and dimensionless 
virtual mass coefficient c/(c~pO as functions of  the dimensionless frequency Re. As a consequence, 
our results are independent of the properties of  the fluid and the characteristic linear dimension 
D of  the pore space as long as the restriction M: <~ 1 is satisfied. This condition requires that the 
characteristic linear dimension D be small compared to the wavelength. 

In figures 7 and 8, we present the computed values of  the nondimensional drag and virtual mass 
coefficients as functions of  the dimensionless frequency Re. For the spherical grains, the 
characteristic linear dimension D is the sphere diameter. (The value we used in the computations 
was D = 0.2 mm.) For the polyhedral grains, the characteristic linear dimension D is the diagonal 
dimension of  the faces of the computational elements shown in figures 4(b), 5(b) and 6(b). 

By comparing the results shown in figures 7 and 8 to our results for various two-dimensional 
pore geometries (Yavari & Bedford 1988), we find that the qualitative behaviors of the dependence 
of  b and c on the frequency are very similar for all of  the pore geometries we have examined. In 
particular, the values of b and c are approximately constant (independent of  the frequency) at low 
values of Re. In the case of  a plane layer of fluid, the value of Re at which b and c are no longer 
independent of  the frequency corresponds approximately to the value at which the thickness of  the 
boundary layer at the wall of the layer of  fluid extends across one-half the width of the layer. The 
boundary layer thickness 6 = (2v/w) ~/2, where v = t l /pf is the kinematic viscosity of the fluid. By 
using this expression, we can write the nondimensional frequency in terms of  the boundary layer 
thickness: Re = 2D 2/,52, where D is the width of the layer. From this result, we see that the boundary 
layer thickness is equal to one-half the width of the layer of fluid when Re = 8. 

Based on this result, we have arrived at a method for normalizing the results presented in figures 7 
and 8. From figure 8, we estimated the value of frequency at which c was no longer constant for 
each of  the three-dimensional pore geometries. By setting Re = pfcoD2/rl = 8 for that value of 
frequency, we solved for D, obtaining an "effective gap size" for each geometry. The effective gap 
size we obtained in the case of the spherical grains was D = 0.0448 mm. For  the polyhedral grains 
we obtained values of D = 0.0479, 0.0614 and 0.0758 mm for the porosities 4) = 0.382, 0.431 and 
0.480, respectively. We then plotted the nondimensional drag and virtual mass coefficients as 
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functions of Re with Re based on the effective gap size. The results are shown in figures 9 and 10 
as plots of b/(copr) and c/pr as functions of Re. (Notice that we have removed the porosity from 
the definitions of the nondimensional drag and virtual mass coefficients. We did so only because 
we observed that it led to a better normalization.) By comparing these plots to figures 7 and 8, 
we see that presenting the results in terms of effective gap size normalizes them reasonably well 
except for the virtual mass coefficient at low frequencies. 

One of our motivations for carrying out this study was to compare our computed values of the 
drag and virtual mass coefficients for a three-dimensional pore volume with values based on Biot's 
solution for straight cylindrical pores (Biot 1956b). In figure 11 we compare our results for the drag 
coefficient b of an fcc stacking of spherical grains with [8]. We used [12] to evaluate the pore size 
parameter ap. We used [13] to evaluate the permeability kp with the empirical parameter k 0 set equal 
to 5 (see Carman 1956; Hovem & Ingram 1979; Ogushwitz 1985a). The agreement is excellent, 
which is consistent with our finding in our study of two-dimensional pore geometries (Yavari & 
Bedford 1988) that the drag coefficient is very insensitive to the pore geometry. 
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In figure 12 we compare values of  the virtual mass coefficient obtained using Biot's result with 
our results for spherical grains. In using Biot's result, Hovem & Ingram (1979) effectively assumed 
that the tortuosity ~ = 1. Note that this assumption does not produce good agreement with our 
results. Results based on the value 7 = 2.4, based on [15] (Berryman 1981), agree more closely with 
our results. We also show results obtained by choosing the value of  the tortuosity to match the 
experimental measurement of the high frequency limit of  the tortuosity by Johnson et al. (1982). 
From their data we estimated the value of  the tortuosity for the porosity (~b = 0.261) of our fcc 
packing of spherical grains to be 7 = 2. Note that the results do not agree exactly with our 
computations. We see two possible reasons for the discrepancy. One is the difference between the 
stacking of the grains in their experiment and the fcc stacking we assumed in the computations. 
Another is that Johnson et al. sintered the beads to alter the porosity, which would have altered 
the pore geometry. 

From figure 12 it is clear that our results for the virtual mass coefficient can be closely 
approximated by using an appropriate empirical choice for the tortuosity. Thus, we conclude that 
the empirical approach suggested by Biot (1956b) can adequately approximate our results for the 
frequency dependence of  the drag and virtual mass coefficients for an fcc stacking of  spherical 
grains. 
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